Surpassing fundamental limits of oscillators using nonlinear resonators.

نویسندگان

  • L G Villanueva
  • E Kenig
  • R B Karabalin
  • M H Matheny
  • Ron Lifshitz
  • M C Cross
  • M L Roukes
چکیده

In its most basic form an oscillator consists of a resonator driven on resonance, through feedback, to create a periodic signal sustained by a static energy source. The generation of a stable frequency, the basic function of oscillators, is typically achieved by increasing the amplitude of motion of the resonator while remaining within its linear, harmonic regime. Contrary to this conventional paradigm, in this Letter we show that by operating the oscillator at special points in the resonator's anharmonic regime we can overcome fundamental limitations of oscillator performance due to thermodynamic noise as well as practical limitations due to noise from the sustaining circuit. We develop a comprehensive model that accounts for the major contributions to the phase noise of the nonlinear oscillator. Using a nanoelectromechanical system based oscillator, we experimentally verify the existence of a special region in the operational parameter space that enables suppressing the most significant contributions to the oscillator's phase noise, as predicted by our model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solution of Nonlinear Hardening and Softening type Oscillators by Adomian’s Decomposition Method

A type of nonlinearity in vibrational engineering systems emerges when the restoring force is a nonlinear function of displacement. The derivative of this function is known as stiffness. If the stiffness increases by increasing the value of displacement from the equilibrium position, then the system is known as hardening type oscillator and if the stiffness decreases by increasing the value of ...

متن کامل

An Analytical Technique for Solving Nonlinear Oscillators of the Motion of a Rigid Rod Rocking Bock and Tapered Beams

In this paper, a new analytical approach has been presented for solving strongly nonlinear oscillator problems. Iteration perturbation method leads us to high accurate solution. Two different high nonlinear examples are also presented to show the application and accuracy of the presented method. The results are compared with analytical methods and with the numerical solution using Runge-Kutta m...

متن کامل

Building better oscillators using nonlinear dynamics and pattern formation

Frequency and time references play an essential role in modern technology and in living systems. The precision of self-sustained oscillations is limited by the effects of noise, which becomes evermore important as the sizes of the devices become smaller. In this paper, we review our recent theoretical results on using nonlinear dynamics and pattern formation to reduce the effects of noise and i...

متن کامل

Efficient Second Harmonic Generation in Matched Ti:PPLN Waveguide Resonators

Second harmonic generation in Ti:PPLN waveguide resonators is investigated as a means of enhancing the conversion efficiency. Using a matched resonator of 65 mm length a record conversion efficiency of 10.3 %/mW is achieved with 0.5 mW fundamental power at λf = 1531 nm. Introduction Second harmonic generation (SHG) in waveguide resonators has been investigated in detail many years ago [1,2]; at...

متن کامل

Power Series -Aftertreatment Technique for Nonlinear Cubic Duffing and Double-Well Duffing Oscillators

Modeling of large amplitude of structures such as slender, flexible cantilever beam and fluid-structure resting on nonlinear elastic foundations or subjected to stretching effects often lead to strongly nonlinear models of Duffing equations which are not amendable to exact analytical methods. In this work, explicit analytical solutions to the large amplitude nonlinear oscillation systems of cub...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 110 17  شماره 

صفحات  -

تاریخ انتشار 2013